CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHALE SHIP STRIKES</td>
<td>04</td>
</tr>
<tr>
<td>GLOBAL MARITIME TRAFFIC</td>
<td>05</td>
</tr>
<tr>
<td>HIGH RISK AREAS</td>
<td>06</td>
</tr>
<tr>
<td>HIGH RISK POPULATIONS</td>
<td>07</td>
</tr>
<tr>
<td>SOLUTIONS</td>
<td>08</td>
</tr>
<tr>
<td>FRIEND OF THE SEA CONSERVATION CAMPAIGN</td>
<td>10</td>
</tr>
<tr>
<td>ENDNOTES</td>
<td>12</td>
</tr>
</tbody>
</table>
The increasing size and speed of commercial ships, driven by economic interests, result in rising numbers of ship collisions with marine species, especially cetaceans (e.g., dolphins and whales). It is a recognised problem, with records indicating that the phenomenon occurs worldwide.

Over the last 50 years, seaborne trade has seen a remarkable development. Maritime shipping carries between 80 and 90 per cent of global trade. (2) This facility has generated significant traffic around the globe which poses a threat to several populations of large cetaceans worldwide—when collisions between vessels and whales are not avoided.

The World Shipping Council (WSC) is the primary industry trade group representing the international liner shipping industry. Council members, which include the world’s ten largest container shipping companies, operate approximately 90 percent of the global liner ship capacity. They provide approximately 400 regularly scheduled services linking the continents of the world. These services connect countries, markets, businesses, and people, allowing them to buy and sell goods on a scale not previously possible. (3)

Any size or type of vessel has the potential to collide with a marine mammal, not only commercial ships. The types of vessels documented in vessel strikes include large boats, such as cargo ships, whale-watching boats, ferries, and military vessels, and all manner of private watercraft used for commercial and recreational purposes. (4)
SAVE THE WHALES FROM SHIP STRIKES

HIGH RISK AREAS
IN CERTAIN REGIONS, WHERE SHIPPING LANES CROSS WHALES FEEDING AND BREEDING AREAS, THE LIKELIHOOD OF COLLISIONS IS EVEN HIGHER.

These spots can be defined as "high risk areas" which include both zones with higher number of whales (where whales aggregate, they are known to return in numbers on a regular basis, or critical population habitats), and zones with a high concentration of vessels (designated shipping lanes, historic shipping routes and port approaches).

The following areas have been identified as "High Risk Areas" where ship strikes are common (5):

1. Sri Lanka - Blue Whales (6)
2. Hauraki Gulf, New Zealand - Bryde's Whales (7)
3. Canary Island - Sperm Whales (8)
4. Panama - Humpback whales (9)
5. Eastern North Pacific (ENP) - Blue Whales
6. Mediterranean Sea
 6.1 Strait of Gibraltar - Fin and Sperm Whales (10)
 6.2 Balearic Islands - Fin and Sperm Whales
 6.3 Eastern Alboran Sea - Fin and Sperm Whales
 6.4 Pelagos Sanctuary - Fin Whales (11)
 6.5 Island of Crete - Sperm Whales
 6.6 Hellenic Trench, Greece - Sperm Whales (12)
7. NE coast of Sakhalin Island - Western Gray Whale (13)
8. Arabian Sea - Humpback whale (14)
9. Chile - Peru (Southern Pacific) - Right Whale (15)
10. Eastern Bering Sea - North Pacific Right Whale
11. Western Arctic (USA and Russian) - Potential threats to Western Bowhead Whales

HIGH RISK POPULATIONS
HUMAN-INDUCED MORTALITY CAUSED BY SHIP STRIKES CAN BE AN IMPEDIMENT TO WHALE'S POPULATION GROWTH.

The following species have been identified as "High Risk Populations" (5):

1. Western North Atlantic Right Whale
2. Eastern North Pacific Right Whale
3. Chile-Peru Right Whale
4. Arabian Sea Humpback Whale
5. Western Gray Whale
6. Blue Whale - Sri Lanka and Arabian Sea
7. Blue Whale - Chile
8. Sperm Whale - Mediterranean Sea
9. Fin Whale - Mediterranean Sea
10. Bryde's Whale - Gulf of Mexico
11. Omura's Whale - North Western Madagascar
12. Sperm Whale - Canary Islands

Every year, 220,000 vessels weighing over 10 tons cross the Mediterranean Sea. Almost 60% of the marine traffic exchanges from, or is directed towards 366 ports of the Mediterranean basin.
They have produced an information leaflet with further advice to reduce the risk of collision between ships and whales. These guidelines contemplate topics related to passage planning, sightings, reporting of incidents, preventive measures and scientific research. Nonetheless, the number of collisions as well as their impacts on populations of large cetaceans remain difficult to evaluate with precision. Technological, operational and educational measures have been implemented around the world.

WAYS TO REDUCE WHALE SHIP STRIKES

1. One way to address this issue is to separate ships and whales. In some places it’s possible to actually move shipping lanes away from areas of known whale concentrations, which can help reduce the risk of these strikes happening.

2. The next best option is slowing down. Studies have shown that when ships slow down it reduces the probability of a strike happening by potentially giving the whale a bit more time to respond. And we’ve also found that slower speeds can reduce the lethality of the strikes.

Effective results in critical areas are urgent. For this, mitigation actions need to be conducted collaboratively. Monitoring and understanding the effects of shipping on our oceans is essential to focus efforts on mitigating the externalities generated by the activity, and to direct shipping companies towards more sustainable transport.

AWARE OF THIS ISSUE, THE INTERNATIONAL WHALING COMMISSION (IWC) IS WORKING IN CONJUNCTION WITH OTHER ORGANISATIONS SUCH AS THE INTERNATIONAL MARITIME ORGANIZATION (IMO).
FRIEND OF THE SEA INVITES SHIPPING COMPANIES TO INTENSIFY THEIR INVOLVEMENT IN THE EFFORTS MADE SO FAR TO SAVE THE WHALES.

Investing in the search for information to reduce the threat of ship collisions will facilitate the implementation of measures that reconcile environmental and economic aspects wherever necessary and in a timely manner. All shipping companies that are aware of the problem and seek effective measures to combine economic gain with the preservation of endangered species can support this important conservation campaign. (17)

Shipping companies need to engage unilaterally, by signing a Friend of the Sea - Save the Whales policy, to:
- have in place an onboard full-time marine mammal observation program, on all vessels. This system must constantly cover the area in front of the vessels (120° minimum), including at night.
- use an online platform onboard to be informed on spotted marine mammals near the ship lanes and planned path.
- share whales' observations in real time with an online platform to make this information available to all ships in the area and for statistical purposes.
- allow Friend of the Sea to access real time data on company vessels and nearby marine mammals on online platform.
- have a procedure in place to react and avoid nearby marine mammals.

Evidence of compliance with the policy can be achieved by means of already implemented systems or Friend of the Sea selected systems, such as:
- onboard infrared cameras
- marine mammal presence alert software
- a network reporting platform

Friend of the Sea will promote Whales Safe approved shipping companies and cruise lines to consumers and companies worldwide, recommending use of their services.

Promotion will be carried out by means of International Press Releases, direct communication with companies, events, trade shows and Social Media.

Friend of the Sea calls the international shipping industry for immediate action to prevent ship strikes. The proposed solution is simple and effective.
ENDNOTES

1. NOAA Fisheries, Understanding Vessel Strikes. (https://www.fisheries.noaa.gov/insight/understanding-vessel-strikes)

4. Laist et al., 2001; Jensen and Silber, 2004; Panigada et al., 2006; Van Waerebeek et al. 2007; Ritter 2012

6. Priyadarshana et al., 2016; Redfern et al., 2016; de Vos et al., 2016

7. Van Waerebeek et al., 2007; Baker et al., 2010; Constantine et al., 2015

9. Guzman et al., 2013

10. De Stephanis and Urquiola, 2006

11. Panigada et al., 2006

12. Frantzis et al., 2014

13. Weller et al., 2002

15. Vanderlaan and Taggart, 2007
